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Spanish Electricity Market

OMIE: `Operador del Mercado Ibérico de Energía'
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Figure : Electricity demand and price daily curves in 2012.
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Electricity demand

2012
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Figure : Electricity demand in 2012.
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Electricity price

2012
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Figure : Electricity price in 2012.
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Functional time series

Daily curves of electricity demand or price along 2012: {χi}
365
i=1

Discretized curves: χi (tj), j = 1, . . . , 24.

Functional time series: {χi}
n
i=1

Real-valued continuous time stochastic process {χ (t)}t∈R
Seasonal process, with seasonal length τ ,
observed on the interval (a, b] with b = a + nτ .

Functional time series, {χi}
n
i=1, is de�ned in terms of {χ (t)}t∈R as:

χi (t) = χ (a + (i − 1) τ + t) with t ∈ [0, τ) .
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Prediction with functional regression

Objective

Predict next�day electricity demand/price in Spain during 2012.
{χi}

N
i=1 −→ χN+1

Functional Autoregressive models

Functional nonparametric regression.

Semi-functional partial linear regression.

Covariates

Electricity demand: meteorological variables, temperature.

Electricity price: demand, wind power production.
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Funtional Nonparametric Regression

Functional explanatory variable and scalar response

Autoregressive model

G (χi+1) = m(χi ) + εi (i = 1, . . . , n)

General model

Yi = m(χi ) + εi ,i = 1, . . . , n where {(χi ,Yi )} is α-mixing

Functional kernel estimator

m̂h(χ) =

∑n
i=1 K (d(χi , χ)/h)Yi∑n
i=1 K (d(χi , χ)/h)

=
n∑

i=1

wh(χi , χ)Yi
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Semi-Funtional Partial Linear Regression

Functional nonparametric explanatory variable, scalar linear-e�ect
covariate and scalar response

Autoregressive model

G (χi+1) = X
T
i β + m(χi ) + εi , i = 1, . . . , n

General model

Yi = X
T
i β + m(χi ) + εi , i = 1, . . . , n, where {(X i ,χi ,Yi )} is

α-mixing
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Estimators

Denote

X = (X 1, . . . ,X n)T , Y = (Y1, . . . ,Yn)T , Wh = (wh(χi ,χj))

and, for any (n × q) matrix A (q ≥ 1),

Ãh = (I−Wh)A.

Estimators

β̂h = (X̃T
h X̃h)−1X̃T

h Ỹh m̂h(χ) =
n∑

i=1

wh(χi , χ)(Yi − XT
i β̂h)

Nadaraya-Watson type weights wh(χi , χ) =
K (d(χi , χ)/h)∑n
i=1 K (d(χi , χ)/h)

,

where K (·) is a real function (the kernel) and h > 0 is a smoothing
parameter.
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In practice: predict electricity demand

Functional nonparametric regression

Functional explanatory variable: previous daily demand curves.

Scalar response: electricity demand for the next day, �xed hour.

Semi-Functional Partial Linear Regression

Scalar explanatory variable: daily temperature → linear e�ect.
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In practice: predict electricity price

Functional nonparametric regression

Functional explanatory variable: previous daily price curves.

Scalar response: electricity price for the next day, �xed hour.

Semi-Functional Partial Linear Regression

Scalar explanatory variable: daily demand, wind power.
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Naive bootstrap

From a general functional nonparametric regression model,
Yi = m(χi ) + εi , built from the sample S = {(χi ,Yi )}ni=1:

Homoscedastic model → Naive bootstrap

1 Construct the residuals ε̂i ,b = Yi − m̂b(χi ), i = 1, . . . , n.

2 Draw n i.i.d random variables ε∗1, . . . , ε
∗
n from the empirical

distribution function of (ε̂1,b − ε̂b, . . . , ε̂n,b − ε̂b), where
ε̂b = n−1

∑n
i=1 ε̂i ,b.

3 Obtain Y ∗i = m̂b(χi ) + ε∗i , i = 1, . . . , n ⇒ S∗ = {(χi ,Y
∗
i )}ni=1

4 De�ne m̂∗hb(χ) =

∑n
i=1 K (d(χi , χ)/h)Y ∗i∑n
i=1 K (d(χi , χ)/h)

.
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Wild bootstrap

Heteroscedastic model → Wild bootstrap

1 Construct the residuals ε̂i ,b = Yi − m̂b(χi ), i = 1, . . . , n.

2 De�ne ε∗i = ε̂i ,bVi , i = 1, . . . , n, where V1, . . . ,Vn are i.i.d.
random variables that are independent of the data S and that
satisfy E (V1) = 0 and E (V 2

1 ) = 1.

3 Obtain Y ∗i = m̂b(χi ) + ε∗i , i = 1, . . . , n ⇒ S∗ = {(χi ,Y
∗
i )}ni=1

4 De�ne m̂∗hb(χ) =

∑n
i=1 K (d(χi , χ)/h)Y ∗i∑n
i=1 K (d(χi , χ)/h)

.
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Notation

For a given �xed element χ0 of the space H, we denote:

B(χ0, l) = {χ1 ∈ H such that d(χ1, χ0) ≤ l},
Fχ0(l) = P(χ ∈ B(χ0, l)) for l > 0,

ϕχ0(s) = E (m(χ)−m(χ0)|d(χ, χ0) = s)

τhχ0(s) = Fχ0(hs)/Fχ0(h) for s ∈ (0, 1]

and
τ0χ0(s) = lim

h↓0
τhχ0(s).

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression
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Notation

M0χ0 = K (1)−
∫ 1

0

(sK (s))′τ0χ0(s)ds,

M1χ0 = K (1)−
∫ 1

0

K ′(s)τ0χ0(s)ds,

M2χ0 = K 2(1)−
∫ 1

0

(K 2(s))′τ0χ0(s)ds

and

Θ(s) = max{max
i 6=j

P(d(χi , χ0) ≤ s, d(χj , χ0) ≤ s),F 2
χ0(s)}.

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression



Introduction
Prediction with functional regression

Con�dence intervals in FNP
Con�dence intervals in SFPLR

Bootstrap
Asymptotic theory
Simulation study
Applications

Assumptions for the convergence of m̂h(χ)

Distribution

m(·) and σ2ε(·) are continuous on a neighbourhood of χ0; σ
2
ε(χ0) > 0.

Fχ0(0) = 0 and ϕχ0(0) = 0 and ϕ′χ0(0) exists.

∀s ∈ [0, 1], lim
n→∞

τhχ0(s) = τ0χ0(s) with τ0χ0(s) 6= 1[0,1](s).

Moments

∃p > 2, ∃M > 0 such that E(|ε|p|χ) ≤ M a.s.

max{E(|YiYj |p|χi ,χj),E(|Yi |p|χi ,χj)} ≤ M a.s. ∀i , j ∈ Z.

Small ball probabilities

h(nFχ0(h))1/2 = O(1) and lim
n→∞

nFχ0(h) =∞ .

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression
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Assumptions for the convergence of m̂h(χ0)

Kernel

K (·) is supported on [0, 1], has a continuous derivative on [0, 1),
K ′(s) ≤ 0 for s ∈ [0, 1) and K (1) > 0.

Dependence structure

{(χi ,Yi )}ni=1 comes from a α-mixing process with
α-mixing coe�cients α(n) ≤ Cn−a,where a is given by:

∃v > 0 such that Θ(h) = O(Fχ0(h)1+v ) with a >
(1 + v)p − 2

v(p − 2)

∃γ > 0/ nFχ0(h)1+γ →∞ and a > max

{
4

γ
,

p

p − 2
+

2(p − 1)

γ(p − 2)

}
0Delsol (2009)
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Assumptions for the convergence of m̂∗hb(χ0)

Moments

Function E(|Y ||χ = ·) is continuous on a neighbourhood of χ0,
and supd(χ1,χ0)<δ E(|Y |q|χ = χ1) <∞ for some δ > 0;∀q ≥ 1.

Distribution

∀(χ1, s) in neighbourhood of (χ0, 0), ϕχ1(0) = 0, ∃ϕ′χ1(s), ϕ′χ1(0) 6= 0

and ϕ′χ1(s) uniformly Lipschitz continuous, order 0 < α ≤ 1 in (χ1, s).

∀χ1 ∈ H, Fχ1(0) = 0 and Fχ1(t)/Fχ0(t) Lipschitz continuous,
order α in χ1, uniformly in t in neighbourhood of 0.

0Ferraty, van Keilegom and Vieu (2010)
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Assumptions for the convergence of m̂∗hb(χ0)

Distribution
∀χ1 ∈ H and ∀s ∈ [0, 1], τ0χ1

(s) exists, supχ1∈H,s∈[0,1] |τhχ1
(s)− τ0χ1

(s)| = o(1),

M0χ0
> 0, M2χ0

> 0, infd(χ1,χ0)<εM1χ0
> 0 for some ε > 0,

and Mkχ1
is Lipschitz continuous of order α for k = 0, 1, 2.

∀n ∃rn ≥ 1, ln > 0 and curves χ1n, . . . , χrnn such that B(χ0, h) ⊂ ∪rnk=1B(χkn, ln),

rn = O(nb/h) and ln = o(b(nFχ0
(h))−1/2), infd(χ1,χ0)<εM1χ0

> 0 for some ε > 0,
Mkχ1

is Lipschitz continuous of order α for k = 0, 1, 2.

Small ball probabilities

max{b, h/b, b1+α(nFχ0
(h))1/2, (Fχ0

(h)/Fχ0
(b)) log n, n1/pFχ0

(h)1/2 log n} = o(1)

max{bhα−1,Fχ0
(b)−1h/b} = O(1) and lim

n→∞
Fχ0

(b + h)/Fχ0
(b) = 1.

0Ferraty, van Keilegom and Vieu (2010)
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Validity of the bootstrap

Theorem

Under previous assumptions, for the wild bootstrap procedure, we

have that

supy∈R |PS
(√

nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y
)
−

P
(√

nFχ(h)(m̂h(χ)−m(χ)) ≤ y
)
| → 0 a.s.

In addition, if the model is homoscedastic (i.e. σ2ε(·) = σ2ε), then the

same result holds for the naive bootstrap.
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Background

Result for independent data

Ferraty, Van Keilegom and Vieu (2010) On the Validity of the
Bootstrap in Non-Parametric Functional Regression.

Asymptotic distribution of m̂h(χ)−m(χ) for independent data

Ferraty, Mas and Vieu (2007) Nonparametric Regression on Functional
data: Inference and Practical Aspects.

Asymptotic distribution of m̂h(χ)−m(χ) for dependent data

Delsol (2009) Advances on asymptotic normality in non-parametric
functional time series analysis.
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Proof outline

PS
(√

nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y
)
−

P
(√

nFχ(h)(m̂h(χ)−m(χ)) ≤ y
)

=

T1(y) + T2(y) + T3(y)

where

T1(y) = PS
(√

nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

Φ

y −
√
nFχ(h)

(
ES
(
m̂∗hb(χ)

)
− m̂b(χ)

)√
nFχ(h)VarS

(
m̂∗hb(χ)

)


0
P
S : probability conditionally on S = {(χi ,Yi )}ni=1
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Proof outline

T2(y) = Φ

y −
√
nFχ(h)

(
ES
(
m̂∗hb(χ)

)
− m̂b(χ)

)√
nFχ(h)VarS

(
m̂∗hb(χ)

)
−

Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)Var (m̂h(χ))

)

and

T3(y) = Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)Var (m̂h(χ))

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)
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Proof outline

T3(y) = Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)Var (m̂h(χ))

)
−

P

(√
nFχ(h)(m̂h(χ)−m(χ)) ≤ y

)

Delsol (2009)

m̂h(χ)− E (m̂h(χ))√
Var (m̂h(χ))

d−→ N(0, 1), a.s.

T3(y) −→ 0 a.s. for any �xed value of y .
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Proof outline

T1(y) = PS
(√

nFχ(h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

Φ

y −
√
nFχ(h)

(
ES
(
m̂∗hb(χ)

)
− m̂b(χ)

)√
nFχ(h)VarS

(
m̂∗hb(χ)

)


Lemma: adapted from Ferraty, van Keilegom and Vieu (2010)

m̂∗hb(χ)− ES
(
m̂∗hb(χ)

)√
VarS

(
m̂∗hb(χ)

) d−→ N(0, 1), a.s.(PS)

T1(y) −→ 0 a.s. for any �xed value of y .
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Proof outline

T2(y) = Φ

y −
√
nFχ(h)

(
ES
(
m̂∗hb(χ)

)
− m̂b(χ)

)√
nFχ(h)VarS

(
m̂∗hb(χ)

)
−

Φ

(
y −

√
nFχ(h) (E (m̂h(χ))−m(χ))√
nFχ(h)Var (m̂h(χ))

)

Lemma: adapted from Ferraty, van Keilegom and Vieu (2010)

∣∣∣∣√nFχ(h)
(
E (m̂h(χ))−m(χ)− ES (m̂∗hb(χ)) + m̂b(χ)

)∣∣∣∣→ 0 a.s.

sup
y∈R
|T2(y)| → 0 a.s.,
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Simulation procedure: building con�dence intervals

Given a curve χ and the FNP regression model

Yi = m(χi ) + εi (i = 1, . . . , n),

where the process {(χi ,Yi )} is α-mixing and identically distributed
as (χ,Y ), and χ is observed from χ, the true, bootstrap and
asymptotic (1− α)-con�dence intervals for m(χ) were constructed:

I trueχ,1−α = (m̂h(χ) + qtrueα/2 (χ), m̂h(χ) + qtrue1−α/2(χ))

I ∗χ,1−α = (m̂h(χ) + q∗α/2(χ), m̂h(χ) + q∗1−α/2(χ))

I asymp
χ,1−α = (m̂h(χ) + qasymp

α/2 (χ), m̂h(χ) + qasymp

1−α/2(χ))
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Theoretical quantiles

Theoretical quantiles (qtruep (χ))

1 Generate nMC samples {(χs
i ,Y

s
i ), i = 1, . . . , n}nMC

s=1
from FNP

Model.

2 Carry out nMC = 2000 estimates
{
m̂s
h(χ)

}nMC

s=1
, where m̂s

h(·) is the

functional kernel estimator derived from the sth sample
{(χs

i ,Y
s
i )}n

i=1
.

3 Compute the set of approximation errors
ERRORS .MC =

{
m̂s
h(χ)−m(χ)

}nMC

s=1
.

4 Compute the theoretical quantile, qtruep (χ), from the quantile of
order p of ERROR.MC .
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Bootstrap quantiles

Bootstrap quantiles (q∗p(χ))

1 Generate the sample S = {(χ1,Y1), . . . , (χn,Yn)} from FNP
Model.

2 Compute m̂b(χ) over the dataset S.
3 Repeat B = 500 times the bootstrap algorithm over S by using

i.i.d. random variables Vi drawn from the two Dirac distributions
0.1(5 +

√
5)δ(1−

√
5)/2 + 0.1(5−

√
5)δ(1+

√
5)/2, giving the B

estimates
{
m̂∗,rhb (χ)

}B
r=1

.

4 Compute set of bootstrap errors

ERRORS .BOOT
{
m̂∗,rhb (χ)− m̂b(χ)

}B
r=1

.

5 Compute the bootstrap quantile, q∗p(χ), from the quantile of
order p of ERRORS .BOOT .

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression



Introduction
Prediction with functional regression

Con�dence intervals in FNP
Con�dence intervals in SFPLR

Bootstrap
Asymptotic theory
Simulation study
Applications

Asymptotic quantiles

Asymptotic quantiles (qasymp
p (χ))

1 Generate the sample S = {(χ1,Y1), . . . , (χn,Yn)} from FNP
Model.

2 Use the sample S to estimate the constants Fχ(h), M1χ, M2χ

and σε as suggested in Delsol (2009).

3 Compute the asymptotic quantile, qasymp
p (χ), from the quantile

of order p of the corresponding normal distribution.
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Simulation procedure

m̂h(χ) in each of the three intervals was obtained from S
Test sample C = {χ1, . . . , χnC}, consisting in nC = 100
independent curves

Empirical coverages: repeat the procedure M = 500 times and
computing the proportion of times that each interval contains the
value m(χ)
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Model 1: Smooth curves

FNP regression model

Yi = m(χi ) + εi

Functional covariate

χi (tj) = cos(ai + π(2tj − 1))

Regression operator

m(χ) =
1

2π

∫ 3/4

1/2
(χ′(t))2dt

{ai} ∼ AR(1) gaussian process
with correlation coe�cient
ρa = 0.7 and variance σ2a = 0.05

0 = t1 < · · · < t100 = 1

{εi} ∼ N(0, σ2),
σ2 = 0.1Var(m(χ1), . . . ,m(χn))

semi-metric dderiv1 (·, ·)

d
deriv
1 (χi ,χj) =

√∫ 1

0

(χ′i (t)− χ′j(t))
2dt,
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Simulated data: Model 1
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Model 2: Rough curves

FNP regression model

Yi = m(χi ) + εi

Functional covariate

χi (tj) = b2i cos(b1i tj) +

j∑
k=1

Bik/b

Regression operator

m(χ) =

∫ π

0

(χ(t))2dt

{b1i} ∼MA(1), {b2i} ∼ AR(1)
with θb1 = −0.5 and ρb2 = 0.9 and
σ2b1 = σ2b2 = 0.1

b = 5, Bik ∼ N(0, 0.1)

0 = t1 < · · · < t100 = π

{εi} ∼ N(0, σ2),
σ2 = 0.1Var(m(χ1), . . . ,m(χn))

semi-metric dproj4 (·, ·)

d
proj
4 (χi ,χj) =√√√√ 4∑
k=1

(

∫ π

0

(χi (t)− χj(t))vk(t)dt)
2.
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Simulated data: Model 2
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Average over C of the empirical coverage of the true, bootstrap
and asymptotic con�dence intervals.

Model 1: smooth curves

1− α 0.95 0.90

n 100 250 100 250

I true 0.95 (0.12) 0.95 (0.01) 0.90 (0.02) 0.90 (0.02)
I ∗ 0.89 (0.12) 0.92 (0.08) 0.85 (0.12) 0.88 (0.08)
I asymp 0.85 (0.14) 0.90 (0.11) 0.79 (0.14) 0.84 (0.12)

Model 2: rough curves

1− α 0.95 0.90

n 100 250 100 250

I true 0.95 (0.01) 0.95 (0.01) 0.90 (0.02) 0.90 (0.02)
I ∗ 0.80 (0.18) 0.89 (0.07) 0.77 (0.18) 0.86 (0.07)
I asymp 0.76 (0.17) 0.82 (0.06) 0.69 (0.16) 0.75 (0.06)
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Model 1: CI coverage.
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Model 1: Con�dence interval for each χ in C.
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Model 2: CI coverage.
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Model 2: Con�dence interval for each χ in C.
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0Segment: bootstrap CI, points: true CI.
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Electricity demand

Dataset: workdays of the second quarter of the year 2012.

Predict one day (24 hours)

χi+1(t) = mt(χi ) + εi ,t (t = 1, . . . , 24, i = 1, . . . , n);

Predict one hour for 21 days

χi+1,d (9) = md (χi ,d ) + εi ,d (d = 1, . . . , 21, i = 1, . . . , n);
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Con�dence intervals for electricity demand
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Figure : Left: Bootstrap CI for the 24 hours of Friday, June 29, 2012.
Right: Bootstrap CI the workdays in June, 2012 (�xed hour: 09:00 a.m.).
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Con�dence intervals for electricity price
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Figure : Left: Bootstrap CI for the 24 hours of Friday, June 29, 2012.
Right: Bootstrap CI the workdays in June, 2012 (�xed hour: 09:00 a.m.).
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Semi-Funtional Partial Linear Regression

Functional nonparametric explanatory variable, scalar linear-e�ect
covariate and scalar response

Autoregressive model

G (χi+1) = X
T
i β + m(χi ) + εi , i = 1, . . . , n

General model

Yi = X
T
i β + m(χi ) + εi , i = 1, . . . , n, where {(X i ,χi ,Yi )} is

α-mixing

Estimators

β̂h = (X̃T
h X̃h)−1X̃T

h Ỹh m̂h(χ) =
n∑

i=1

wh(χi , χ)(Yi − XT
i β̂h)
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Naive bootstrap

Homoscedastic model

1 Construct the residuals ε̂i ,b = Yi −XT
i β̂b − m̂b(χi ), i = 1, . . . , n.

2 Draw n i.i.d. random variables ε∗1, . . . , ε
∗
n from the empirical

distribution function of (ε̂1,b − ε̂b, . . . , ε̂n,b − ε̂b), where
ε̂b = n−1

∑n
i=1 ε̂i ,b.

3 Obtain Y ∗i = X
T
i β̂b + m̂b(χi ) + ε∗i , i = 1, . . . , n.

4 De�ne
β̂
∗
b = (X̃T

b X̃b)−1X̃T
b Ỹ
∗
b

and

m̂∗hb(χ) =
n∑

i=1

wh(χi , χ)(Y ∗i − XT
i β̂
∗
b),
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Wild bootstrap

Heteroscedastic model

1 Construct the residuals ε̂i ,b = Yi −XT
i β̂b − m̂b(χi ), i = 1, . . . , n.

2 De�ne ε∗i = ε̂i ,bVi , i = 1, . . . , n, where V1, . . . ,Vn are i.i.d.
random variables that are independent of the data S and that
satisfy E (V1) = 0 and E (V 2

1 ) = 1.

3 Obtain Y ∗i = X
T
i β̂b + m̂b(χi ) + ε∗i , i = 1, . . . , n.

4 De�ne
β̂
∗
b = (X̃T

b X̃b)−1X̃T
b Ỹ
∗
b

and

m̂∗hb(χ) =
n∑

i=1

wh(χi , χ)(Y ∗i − XT
i β̂
∗
b),
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Assumptions for the linear part of the SFPLR model

Semi-metric space

χ is valued in come given compact subset C of H such that

C ⊂
τn⋃
k=1

B(zk , ln), where τnl
γ
n = C , τn →∞ and ln → 0 as n→∞.

Kernel

K has support [0, 1], Lipschitz continuous on [0,∞).
∃k/∀u ∈ [0, 1],−K ′(u) > k > 0.

Smoothness

Denote gj(χ) = E (Xij |χi = χ), 1 ≤ i ≤ n, 1 ≤ j ≤ p.
All the operators to be estimated are smooth, ie, for some c <∞ and
α > 0, ∀(u, v) ∈ C × C,∀f ∈ m, g1, . . . , gp: |f (u)− f (v)| ≤ cd(u, v)α.
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Assumptions for the linear part of the SFPLR model

Distributions

For the probability distribution of the in�nite-dimensional process χ, it
is assumed that exists F , positive valued function on (0,∞) and
positive constants α0, α1, α2 such that, ∀t ∈ C, h > 0 :∫ 1

0

F (hs)ds > α0F (h) and α1F (h) ≤ P(χ ∈ B(t, h)) ≤ α2F (h).

The joint probability distribution of (χi ,χj) is assumed that exists a
function ψ(h) = cF (h)1+ε (c > 0, 0 ≤ ε ≤ 1) and positive constants
α3, α4 such that ∀t ∈ C, h > 0:

0 < α3ψ(h) ≤ sup
i 6=j

P[(χj ,χj) ∈ B(t, h)× B(t, h)] ≤ α4ψ(h).
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Assumptions for the linear part of the SFPLR model

Dependence structure

{(X i ,χi ,Yi )}ni=1 come from some stationary strong mixing process,
with mixing coe�cients {α(n)} that verify

α(n) ≤ cn−a, a > 4.5.

while
ηi is independent of εi , (i = 1, . . . , n),

where ηi = (ηi1, . . . , ηip)T ,
ηij = Xij − E (Xij |χi ) = Xij − gj(χ), j = 1, . . . , p.
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Assumptions for the linear part of the SFPLR model

Moments

Denote Vε = E (εεT ), εT = (ε1, . . . , εn), ηT = (η1, . . . , ηn).

E |Y1|r + E |X11|r + . . .+ E |X1p|r <∞ for some r > 4.

supi ,jE (|YiYj ||(χi ,χj)) <∞

max
1≤j≤p

sup
i1,i2

E (|Xi1jXi2j ||(χi1,jχi2,j)) <∞

B = E (η1η
T
1 ),C = lim

n→∞
n−1E (ηTVεη).

B and C are positive de�nite matrix.

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression



Introduction
Prediction with functional regression

Con�dence intervals in FNP
Con�dence intervals in SFPLR

Bootstrap
Asymptotic theory
Applications

Assumptions for the linear part of the SFPLR model

Moments

s
r(a+1)
2(a+r)
n = o(nθ) for some θ > 2,

where sn = supχ∈C(sn,1(χ) + sn,2(χ) + sn,3(χ)), with

sn,1(χ) =
n∑

i=1

n∑
j=1

|Cov(∆i (χ),∆j(χ)| with ∆i (χ) = K (
d(χi , χ)

h
)

sn,2(χ) =
n∑

i=1

n∑
j=1

|Cov(Γi (χ), Γj(χ)| with Γi (χ) = YiK (
d(χi , χ)

h
)

sn,3(χ) = max
1≤k≤p

n∑
i=1

n∑
j=1

|Cov(Γik(χ), Γjk(χ)| with Γik(χ) = XikK (
d(χi , χ)

h
)
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Assumptions for the linear part of the SFPLR model

Small ball probabilities

In order to manage the convergence rates found in the development of
the Theorem, it is necessary to consider the following assumptions:

nh4α → 0, F (h)−1n−1/4+1/r logn→ 0, nF (h)
εa(r−2)

r
−1=O(1)

F (h)−2
(
n
1− θ(a+r)

r(a+1)
)−2

logn= O(1) as n→∞

where α > 0, 0 ≤ ε ≤ 1, a > 4.5, r > 4 and θ > 2.
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Validity of the bootstrap for the linear part

Theorem (Naive)

Under previous assumptions, if the model is homoscedastic and

a ∈ Rp, for the naive bootstrap we have:

sup
y∈R

∣∣∣PS (√naT (β̂
∗
b − β̂b) ≤ y

)
− P

(√
naT (β̂b − β) ≤ y

)∣∣∣→P 0

Theorem (Wild)

Under previous assumptions if, in addition |εi | <∞, i = 1, . . . , n,
F (h)−1n−1/4+1/r logn(loglogn)1/4 → 0, E|ηηT | <∞, E|η|3 <∞ and

a ∈ Rp, for the wild bootstrap procedure we have that

sup
y∈R

∣∣∣PS (√naT (β̂
∗
b − β̂b) ≤ y

)
− P

(√
naT (β̂b − β) ≤ y

)∣∣∣→P 0

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression
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Validity of the bootstrap for the nonparametric part

Theorem (Naive and Wild bootstrap)

Under previous assumptions, if ||X i ||∞ ≤ C <∞, we have:

sup
y∈R
|PS

(√
nF (h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

P
(√

nF (h)(m̂h(χ)−m(χ)) ≤ y
)
| →P 0
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Electricity demand

Dataset: workdays of the second quarter of the year 2012.

Predict one day (24 hours)

χi+1(t) = X
T
i β + mt(χi ) + εi ,t (t = 1, . . . , 24, i = 1, . . . , n);

Temperature covariates: X i = (Xi1,Xi2)T = (HDDi ,CDDi )
T

Model length: mean (sd)

FNP 1045.92 (353.44)
SFPLR 969.92 (250.00)
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Con�dence intervals for electricity demand
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Figure : Bootstrap CI for the 24 hours of Friday, June 29, 2012.
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Electricity price

Dataset: workdays of the second quarter of the year 2012.

Predict one day (24 hours)

χi+1(t) = X
T
i β + mt(χi ) + εi ,t (t = 1, . . . , 24, i = 1, . . . , n);

Covariates: X i = (Xi1,Xi2)T = (Demandi ,Windi )
T

Model length: mean (sd)

FNP 7.44 (1.63)
SFPLR (Demand) 6.50 (1.55)
SFPLR (Demand+Wind) 8.40 (1.21)
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Con�dence intervals for electricity price
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Figure : Bootstrap CI for the 24 hours of Friday, June 29, 2012.
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Electricity price

Predict one hour for 21 days

χi+1,d (20) = X
T
i β + md (χi ,d ) + εi ,d (d = 1, . . . , 21, i = 1, . . . , n);

Covariates: X i = (Xi1,Xi2)T = (Demandi ,Windi )
T

Model length: mean (sd)

FNP 6.21 (1.54)
SFPLR (Demand) 6.23 (1.57)
SFPLR (Demand+Wind) 8.34 (2.64)
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Con�dence intervals for electricity price
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Figure : Bootstrap CI the workdays in June, 2012 (�xed hour: 20:00
a.m.).
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Thanks for your attention!
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Proofs outline: linear part

PS
(√

naT (β̂
∗
b − β̂b) ≤ y

)
−P

(√
naT (β̂b − β) ≤ y

)
= T1(y)+T2(y)

where a is a constant vector in Rp,

T1(y) = PS
(√

naT (β̂
∗
b − β̂b) ≤ y

)
− Φ

(
y√
aTAa

)
T2(y) = Φ

(
y√
aTAa

)
− P

(√
naT (β̂b − β) ≤ y

)
.
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Proofs outline: linear part

T2(y) = Φ

(
y√
aTAa

)
− P

(√
naT (β̂b − β) ≤ y

)
.

Theorem 1, Aneiros and Vieu (2008)

√
n(β̂h − β) −→D N(0,A)where A = B

−1
CB
−1.

T2(y) −→ 0 for any �xed value of y .
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: linear part

T1(y) = PS
(√

naT (β̂
∗
b − β̂b) ≤ y

)
− Φ

(
y√
aTAa

)

Lemma
√
n(β̂

∗
b − β̂b)

d−→P N(0,A) ,conditionally on the sample S.

T1(y) −→ 0 for any �xed value of y .
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: linear part

Proof of the Lemma:
For a given function g(·) = m(·) or g(·) = m̂b(·), we denote

g̃b(χ) = g(χ)−
n∑

i=1

wb(χi , χ)g(χi ).

Then, one can write
√
n(β̂

∗
b − β̂b) = (n−1X̃T

b X̃b)−1n−1/2(S∗n1 − S∗n2 + S∗n3).

Asymptotic normality is obtained by:

S∗n1 − S∗n2 + S∗n3 =
n∑

i=1

ηiε
∗
i + oP(n1/2) (PS),

and

n−1/2
n∑

i=1

ηiε
∗
i

D−→ N(0,C) , in PS ,
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

sup
y∈R
|PS

(√
nF (h)(m̂∗hb(χ)− m̂b(χ)) ≤ y

)
−

P
(√

nF (h)(m̂h(χ)−m(χ)) ≤ y
)
| →P 0

(nF (h))1/2(m̂h(χ)−m(χ)) −→ N(0, σ2(χ))

(nF (h))1/2(m̂∗hb(χ)− m̂b(χ)) −→ N(0, σ2(χ))

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression



Introduction
Prediction with functional regression

Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

(nF (h))1/2(m̂h(χ)−m(χ)) =

(nF (h))1/2(
n∑

i=1

wh(χi , χ)(Yi − XT
i β̂h)−m(χ))) =

(nF (h))1/2(
n∑

i=1

wh(χi , χ)(XT
i β + m(χi ) + εi − XT

i β̂h)−m(χ))) =

(nF (h))1/2(
n∑

i=1

wh(χi , χ)(m(χi ) + εi )−m(χ))−

−(nF (h))1/2
n∑

i=1

wh(χi , χ)XT
i (β̂h − β) =

S1(χ)− S2(χ)
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

S1(χ) = (nF (h))1/2(
n∑

i=1

wh(χi , χ)(m(χi ) + εi )−m(χ)) =

= (nF (h))1/2(m̂NP
h (χ)−mNP(χ))

Delsol (2009)

(nF (h))1/2(m̂NP
h (χ)−mNP(χ)) −→D N(0, σ2(χ))

S1(χ) −→D N(0, σ2(χ))

J.M. Vilar, P. Raña, G. Aneiros and P. Vieu Bootstrap con�dence intervals in functional regression



Introduction
Prediction with functional regression

Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

S2(χ) = (nF (h))1/2
n∑

i=1

wh(χi , χ)XT
i (β̂h − β)

Theorem 1, Aneiros and Vieu (2008)

√
n(β̂h − β) −→D N(0,A)where A = B

−1
CB
−1.

Lemma

max |wh(χi , χ)| = O((nF (h))−1)

S2(χ) = oP(1)
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

(nF (h))1/2(m̂∗hb(χ)− m̂b(χ)) =

(nF (h))1/2(
n∑

i=1

wh(χi , χ)(Y ∗i − XT
i β̂
∗
b)− m̂b(χ)) =

(nF (h))1/2(
n∑

i=1

wh(χi , χ)(XT
i β̂b + m̂b(χi ) + ε∗i − XT

i β̂
∗
b)− m̂b(χ)) =

(nF (h))1/2(
n∑

i=1

wh(χi , χ)(m̂b(χi ) + ε∗i )− m̂b(χ))−

−(nF (h))1/2
n∑

i=1

wh(χi , χ)XT
i (β̂

∗
b − β̂b) =

S∗1 (χ)− S∗2 (χ)
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

S∗1 (χ) = (nF (h))1/2(
n∑

i=1

wh(χi , χ)(m̂b(χi ) + ε∗i )− m̂b(χ))

= S∗1,1(χ) + S∗1,2(χ)

S∗1,1(χ) contains the nonparametric part of the expression.
S∗1,2(χ) contains the linear part of the expression.
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

S∗1,1(χ) = (nF (h))1/2(m̂∗NPhb (χ)− m̂NP
b (χ)) −→D N(0, σ2(χ))

Raña, Aneiros, Vilar and Vieu

supy∈R |PS
(√

nFχ(h)(m̂∗NPhb (χ)− m̂NP
b (χ)) ≤ y

)
−

P
(√

nFχ(h)(m̂NP
h (χ)−mNP(χ)) ≤ y

)
| → 0 a.s.

Delsol (2009)

(nF (h))1/2(m̂NP
h (χ)−mNP(χ)) −→D N(0, σ2(χ))
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

S∗1,2(χ) = (nF (h))1/2(
n∑

i=1

wh(χi , χ)[
n∑

j=1

wb(χj ,χi )X
T
j (β − β̂b) +

+XT
j (β − β̂b)−

n∑
l=1

wb(χl ,χj)X
T
l (β − β̂b)− 1

n

n∑
k=1

(XT
k (β − β̂b)−

n∑
l=1

wb(χl ,χk)XT
l (β − β̂b))]−

n∑
i=1

wb(χi , χ)XT
i (β − β̂b))

Aneiros and Vieu (2008)
√
n(β̂h − β) −→D N(0,A)

Assumption

||X i || ≤ C <∞

S∗1,2(χ) = oP(1)(PS).
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Con�dence intervals in FNP
Con�dence intervals in SFPLR

Proofs outline: nonparametric part

S∗2 (χ) = (nF (h))1/2
n∑

i=1

wh(χi , χ)XT
i (β̂

∗
b − β̂b) = oP(1)(PS)

Raña, Aneiros, Vilar and Vieu

sup
y∈R

∣∣∣PS (√naT (β̂
∗
b − β̂b) ≤ y

)
− P

(√
naT (β̂b − β) ≤ y

)∣∣∣→P 0

Aneiros and Vieu (2008)
√
n(β̂h − β) −→D N(0,A)

Assumption

||X i || ≤ C <∞
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