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Linear Models
I Linearity: the mean of the observation is a linear function of some covariates
I Normality: multivariate normal distribution for the vector of observed y-values
I Independence: observations are independent

Linear Mixed Models

I Mixed models have a more complex multilevel or hierarchical
structure. Observations in different levels or clusters are assumed to
be independent, but observations within the same level or cluster are
considered as dependent because they share common properties.
Two sources of variation: between and within clusters. The possibility
of modelling those sources of variation, commonly present in real data,
gives a high flexibility, and therefore applicability, to mixed models.
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What is a Small Area or Domain?

I Small Area: is commonly
used to denote a small
geographical area, such as
a county, a municipality or a
census division.

I Small Domain: is commonly
used to denote a small
subpopulation such as a
specific age-sex-race group
of people within a large
geographical area. They
may also describe a Small
Area.

FISTERRA

SANTIAGO
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Why the inference problem?

Sample survey data can
be used to derive reli-
able estimators of param-
eters (totals, means,....)
for large areas or do-
mains. The usual di-
rect survey estimators for
a small area, based on
data only from the sam-
ple units in the area, are
likely to yield unaccept-
ably large standard errors
due to the unduly small
size of the sample in the
area.

FISTERRA

SANTIAGO
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The aim

I Model selection and checking is one of major problems in SAE.

I Model selection for linear mixed models is different from model selection for
linear regression models.

I Broad approaches: (Muller et al., 20131).

Information Criteria

AIC( Akaike, 1973)
BIC (Schwarz, 1978).

Shrinkage Methods

LASSO (Tibshirani,1996).

Fence Methods

Jiang et al., 2008.

Others Methods

Others Bayesian methods,
testing, etc.

1Muller, S., Scealy, J.L. and Welsh, A.H. (2013). Model Selection in linear Mixed Models Statistical
Science, vol. 28, 135-167.
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AIC

AIC

AIC(M) = −2 log(l(M)) + 2D

I AIC was designed to be an approximately unbiased estimator of the expected
Kullback-Leibler information of a fitted model.

I l(M) is the model likelihood⇐= Loss function
I D measurement of model complexity⇐= Penalty term
I The model with the lowest value of AIC is selected.
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GAIC

GAIC

GAIC(M) = −2 log(l(M)) +GDF

I GDF is a measure of the sensitivity of each fitted value to perturbation in the
corresponding observed value⇐= Penalty term applicable to complex
modeling procedures (Ye, 19982).

2Ye, J. (1998). On measuring and correcting the effects of data mining and model selection, J. Amer.
Statist. Assoc., Vol. 93, 120-131.
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GAIC

GAIC

GAIC(M) = −2 log(l(M)) +GDF

I This definition is vague because we can define different versions of the Akaike
Information using different log density-like functions and we can consider
various model estimators.

I l(M) is the model likelihood⇐= Loss function (Vaida and Blanchard, 20053;
Greven and Kneib, 20104; Pfeffermann, 20135; Han, 20136).

3Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models,
Biometrika, Vol. 92, 351-370.

4Greven,S. and Kneib, T. (2010). On The beahviour of Marginal and Conditional Akaike Information
Criteria in Linear Mixed Models, Biometrika, Vol. 97, 773-789.

5Pfeffermann, D. (2013). New important developments in small area estimation. Statistical Science, Vol.
28, 40-68.

6Han, B (2013). Conditional Akaike information criterion in the Fay-Herriot model, Statistical
Methodology, Vol. 11, 53-67.

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 15/52



Introduction xGAIC Particular models Simulation study Real applications Conclusions

Section 2 xGAIC
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The model

Notation:
I D is the number of the domains or small areas.
I µd is the characteristic of interest in the d-th area.
I yd = ȳd is the direct estimator of the characteristic µd.
I p auxiliary variables (X1, . . . Xp).
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The model

The model is composed in two-stages:

Fist stage:

yd ∼ N(µd, σ
2
d) → yd = µd + ed, d = 1, . . . , D;

where ed ∼ N(0, σ2
d) are independent with σ2

d known, in practice we take
the design-based variance of direct estimator yd.

Second stage:

µd ∼ N(θd, σ
2
u) → µd = θd + ud, d = 1, . . . , D;

where θd = f(x1d, . . . , xpd) is a linear or nonlinear function depending on
the model considered, and ud ∼ N(0, σ2

u) are independent with the variance
σ2
u unknown.

The final model can be expressed as a single model

yd = θd + ud + ed, d = 1, . . . , D.

with θd = f(x1d, . . . , xpd) and µd = θd + ud .M.J. Lombardía – Generalized Akaike Information Criterion for small area models 18/52
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The model

Y = θ + u + e

Assumptions:

u ∼ N(0,Σu = σ2
uID) is the small area random effect and independent of the

model error e ∼ N(0,Σe), and ID the identity matrix with dimension D. Note that
the variability of e is known and different in each area, Σe = diag(σ2

1 , . . . , σ
2
D).

Marginal approach

E(Y) = θ
V ar(Y) = Vy = Σu + Σe

Conditional approach

E(Y|u) = µ = θ + u
V ar(Y|u) = Vy|u = Σe

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 19/52
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The calculation of log-likelihood

Y = θ + u + e

Marginal approach

E(Y) = θ
V ar(Y) = Vy = Σu + Σe

Conditional approach

E(Y|u) = µ = θ + u
V ar(Y|u) = Vy|u = Σe

I Marginal log-likelihood:

log(lm(M)) = −1

2
D log(2π)− 1

2
log |Vy| −

1

2
(Y − θ)

′
V−1
y (Y − θ)

I Conditional log-likelihood:

log(lc(M)) = −1

2
D log(2π)− 1

2
log |Vy|u| −

1

2
(Y − µ)

′
V−1
y|u(Y − µ)
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The calculation of GDF

GDF

GDF is a measure of the sensitivity of the expected estimated of the re-
sponse with respect to the corresponding underlying means (Ye (1998)a,
You et al. (2016)b).

xGDF =

D∑
d=1

∂E(µ̂i)

∂µi
=

D∑
d=1

D∑
i=1

V −1
di Cov(µ̂d, yi)

aYe, J. (1998). On measuring and correcting the effects of data mining and model selection, J.
Amer. Statist. Assoc., Vol. 93, 120-131.

bYou,C., Muller,S. and Ormerod,J.T. (2016). On generalized Degrees of Freedom with application
in linear models selection, Statistics and Computing, Vol. 26, 199-210.

As alternative,

cGDF =
D∑
d=1

D∑
i=1

V −1
(y|u),diCov(µ̂d, yi)
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The calculation of GDF: Parametric bootstrap

I Mixed approach

1 Fit the model yd = f(x1d, . . . , xpd) + ud + ed with ud ∼ N(0, σ2
u) independent of

ed ∼ N(0, σ2
d) and Vd = V ar(yd). We calculate the estimators of the model

parameters.

2 Repeat B times (b = 1, . . . , B)

1 Generate u∗d and e∗d as independents N(0, σ̂2
u) and N(0, σ2

d) respectively,
d = 1, . . . , D. Construct the bootstrap model y∗(b)d = µ

∗(b)
d + e

∗(b)
d , with

µ
∗(b)
d = f̂(x1d, . . . , xpd) + u

∗(b)
d and f̂(x1d, . . . , xqd) the fitted model and

V
∗(b)
y,d = V ar(y

∗(b)
d ).

2 For each bootstrap sample, calculate µ̂∗(b)d = f̂∗(b)(x1d, . . . , xpd) + û
∗(b)
d .

3 Calculate GDF as

x̂GDF =
D∑
d=1

D∑
i=1

1

B − 1

B∑
b=1

(V
∗(b)
y,di )−1(µ̂

∗(b)
d − ¯̂µ∗d)(y

∗(b)
i − ȳ∗i )

where ¯̂µ∗d = 1
B

∑B
b=1 µ̂

∗(b)
d and ȳ∗d = 1

B

∑B
b=1 y

∗(b)
d .

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 22/52



Introduction xGAIC Particular models Simulation study Real applications Conclusions

The calculation of GDF: Parametric bootstrap

I Conditional approach

1 Fit the model yd = f(x1d, . . . , xpd) + ud + ed where ud ∼ N(0, σ2
u) independent

of ed ∼ N(0, σ2
d). With moments µd and Vy|u,d. Then, we calculate the estimators

of the model parameters.

2 Repeat B times (b = 1, . . . , B)

1 Generate e∗d as N(0, σ2
d), d = 1, . . . , D. Construct the bootstrap model

y
∗(b)
d |ûd = µ̂d + e

∗(b)
d , with µ̂d = f̂(x1d, . . . , xpd) + ûd and f̂(x1d, . . . , xqd) the

fitted model and V ∗(b)
y|u,d

= V ar(y
∗(b)
d |ûd).

2 For each bootstrap sample, calculate µ̂∗(b)d = f̂∗(b)(x1d, . . . , xpd) + û
∗(b)
d .

3 Calculate GDF as

x̂GDF =
D∑
d=1

D∑
i=1

1

B − 1

B∑
b=1

(V
∗(b)
y|u,di)

−1(µ̂
∗(b)
d − ¯̂µ∗d)(y

∗(b)
i − ȳ∗i )

where ¯̂µ∗d = 1
B

∑B
b=1 µ̂

∗(b)
d and ȳ∗d = 1

B

∑B
b=1 y

∗(b)
d .
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xGAIC
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xGAIC

I cGAIC = −2 log(lc(M̂)) + cĜDF

I yGAIC = −2 log(lc(M̂)) + xĜDF (You et al. (2016)7)

I yGAIC = −2 log(lm(M̂)) + xĜDF (You et al. (2016)

xGAIC

As alternative,

log(lx(M)) = −1

2
D log(2π)− 1

2
log |Vy| −

1

2
(Y − µ)

′
V−1
y (Y − µ).

I xGAIC = −2 log(lx(M̂)) + xĜDF

7You, C., Muller, S. and Ormerod, J.T. (2016). On generalized Degrees of Freedom with application in
linear models selection, Statistics and Computing, Vol. 26, 199-210.
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Section 3 Particular models
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The model

Fay-Herriot model:
θ = Xβ

where β is the vector of regression coefficients.
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The model

Fay-Herriot model:

θ = Xβ and µ = θ + u

where β is the vector of regression coefficients.

To fit the model we use Maximun Likelihood Estimation (MLE) and we use the
functions available in package sae in R languaje (Molina and Marhuenda (2015)8).

β̃ = (X
′
V−1
y X)−1X

′
V−1
y Y and ũ = ΣuV

−1
y (Y −Xβ̂),

The variance components σ2
u are unknown, then well-known methods such MLE or

restricted maximum likelihood (REML) can be used to estimate them,
V̂ ar(Y) = V̂y = Σ̂u + Σ̂e, you can see the details of the calculation in Rao and
Molina (2015)9 .

θ̂ = Xβ̂ and µ̂ = Xβ̂ + û

8Molina I. and Marhuenda Y. (2015). sae: An R Package for Small Area Estimation. The R Journal, Vol.
7, 81-98.

9Rao, J.N.K. and Molina, I. (2015). Small Area Estimation, Wiley.
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The model

Monotone model:

θd = f(x1d, . . . , xpd) =

p1∑
j=1

βjxjd +

p∑
j=p1+1

hj(xjd), d = 1, . . . , D;

where hj() are monotone functions.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

7
8

9
10

11
12

MM

x

y
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The model

Monotone model:

θd = f(x1d, . . . , xpd) =

p1∑
j=1

βjxjd +

p∑
j=p1+1

hj(xjd), d = 1, . . . , D;

where hj() are monotone functions.

To obtain the MLE we use the methodology proposed in Rueda and Lombardía
(2012)10

θ̂d =

p1∑
j=1

β̂jxjd +

p∑
j=p1+1

ĥj(xjd) = PW (Y|K)

µ̂d =

(
1− σ2

u

σ2
d + σ2

u

)
θ̂d +

σ2
u

σ2
d + σ2

u

Yd, d = 1, . . . , D.

In the case σ2
u unknown, we propose an iterative procedure to obtain

θ̂ = PW (Y|K) and σ̂2
u, which is based on Rueda et al. (2010)11.

10Rueda, C. and Lombardía, M.J. (2012). Small Area Semiparametric Additive Isotone Models, Statistical Modelling, Vol. 12, 503-525
11Rueda, C. and Menéndez, J.A. and Gómez, F. (2010). Small area estimators based on restricted mixed models, TEST, Vol. 19, 558-568
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The model

Penalized spline model:

θd = f(x1d, . . . , xpd) =

p1∑
j=1

βjxjd +

p∑
j=p1+1

fj(xjd), d = 1, . . . , D;

where p = p1 + p2 the number of area auxiliary variables, fj() are any
smooth functions.
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The model

Penalized spline model:

θd = f(x1d, . . . , xpd) =

p1∑
j=1

βjxjd +

p∑
j=p1+1

fj(xjd), d = 1, . . . , D;

where p = p1 + p2 the number of area auxiliary variables, fj() are any
smooth functions.

Using P-splines we can write the model as the following mixed effects model
(Opsomer et al. (2008))12.

Y = θ + u + e = Xβ + Zv + u + e,

where Xβ + Zv represents the spline function. For fitting the model is suitable to
treat Zv as a random effect term, with v ∼ N(0,Σv = σ2

vIc−2), where c is the
dimension of Z. Then, the covariance matrix of the variable Y is given by
V ar(Y) = Vy = ZΣvZ

′ + Σu + Σe, adding an additional term if we compare with
the Fay-Herriot model.

θ̂ = Xβ̂ + Zv̂ and µ̂ = Xβ̂ + Zv̂ + û
12Opsomer, J., Claeskens, G., Ranalli, M., Kauermann, G. and Breidt, F. (2008). Non-parametric small area estimation using penalized spline

regression, Journal Royal Statistical Society Series B, Vol. 70, 265-286

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 32/52



Introduction xGAIC Particular models Simulation study Real applications Conclusions

Section 4 Simulation study
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Simulation study

yd = f(xd) + ud + ed

where D = 77, xd ∼ U(0, 1), ud ∼ N(0, σ2
u) and ed ∼ N(0, σ2

d).

12 scenarios are designed, based on different definitions for f(), and different σu
and σd, d = 1, ..., D, values:

I (LM): f(xd) = β0 + β1xd

I (MM): f(xd) = β0 + log(xd)

I (NM): f(xd) = β0 + sin(πxd)

I σ2
d = σ2

de, σ2
d = σ2

de ∗ 10

I σ2
u = σ2

ue, σ2
u = σ2

ue/10

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 34/52
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Simulation study

Global statistics:
I Correct classification rates from using xGAIC, cGAIC and yGAIC.

I Average values of σ̂2
u , x̂GDF and ĉGDF , for the Fay-Herriot, monotone and

P-spline model.

I Relative root mean squared error (RRMSE) for the σ̂2
u, corresponding to the

model selected by xGAIC, cGAIC and yGAIC:

RRMSE(σ̂2
u) =

√
1
I

∑I
i=1 (σ̂

2(i)
u − σ2

u)2

σ2
u

.

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 35/52
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Simulation study

Scenario xGAIC cGAIC

Fay-Herriot Monotone P-spline Fay-Herriot Monotone P-spline
σ2
ue, σ

2
de

LM 36.98 61.85 1.17 47.04 44.07 8.89
MM 0 100 0 36.8 30.2 33
NM 1.35 14.35 84.3 34.98 33.63 31.39
σ2
ue/10, σ

2
de

LM 24.37 73.11 2.52 34.18 60.5 5.32
MM 0 100 0 13.6 46.4 40
NM 0 0 100 15.72 24.93 59.35
σ2
ue, σ2

de*10
LM 36.57 56.12 7.31 38.10 47.96 13.95
MM 0 100 0 35.27 39.83 24.90
NM 3.60 2.80 93.60 10.80 54.80 34.40
σ2
ue/10, σ

2
de*10

LM 22.35 63.22 12.36 24.48 66.12 9.48
MM 0 100 0 7.00 56.60 36.40
NM 0 0 100 8.80 59.03 32.18

Table 1: Percentage of times Fay-Herriot, Monotone or P-Spline models are selected by
xGAIC and cGAIC under different simulated scenarios.

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 36/52



Introduction xGAIC Particular models Simulation study Real applications Conclusions

Simulation study

Scenario xGAIC cGAIC yGAIC

σ2
ue,σ2

de

LM 0.09 0.08 0.08
MM 0.12 0.59 0.53
NM 0.11 0.20 0.19
σ2
ue/10, σ2

de

LM 0.12 0.11 0.11
MM 0.18 1.60 1.55
NM 0.10 0.91 0.92
σ2
ue, σ2

de ∗ 10
LM 0.10 0.10 0.09
MM 0.13 0.57 0.63
NM 0.11 0.20 0.20
σ2
ue/10, σ2

de ∗ 10
LM 0.19 0.16 0.15
MM 0.36 1.27 1.77
NM 0.15 0.97 0.98

Table 2: RRMSE of σ̂2
u using the model selected by xGAIC, cGAIC and yGAIC under

different simulated scenarios.
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Simulation study

Scenario x̂GDF ĉGDF

Fay-Herriot Monotone P-spline Fay-Herriot Monotone P-spline
σ2
ue, σ

2
de

LM 74.83 75.05 74.86 74.89 74.99 74.86
MM 76.29 74.98 75.02 76.30 75.11 75.10
NM 75.44 75.45 74.98 75.47 75.41 74.96
σ2
ue/10, σ

2
de

LM 64.92 65.69 64.69 64.49 65.33 64.26
MM 76.12 67.15 69.42 76.12 67.23 69.95
NM 74.02 73.62 64.28 74.01 73.60 64.25
σ2
ue, σ

2
de*10

LM 65.09 65.80 64.79 64.70 65.25 64.37
MM 72.47 65.74 65.75 72.54 65.47 65.70
NM 67.61 68.27 65.22 67.28 67.60 64.64
σ2
ue ∗ 10, σ

2
de*10

LM 40.17 42.79 39.39 38.75 40.36 38.16
MM 71.57 45.59 49.24 71.62 43.88 50.03
NM 60.14 58.36 38.26 59.60 57.22 37.70

Table 3: Average values of x̂GDF and ĉGDF under different simulated scenarios.
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Section 5 Real applications
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Application to Labour Force Survey

I Data set: Labour Force Survey (LFS) of Galicia in the fourth quarter of 2013

I Domains: Economic activity (D = 77)

I Objective: Total employed people in each domain d, which includes
people currently employed in the activity or unemployed people whose
last job has been in such activity.

Our goal is to estimate
Yd =

∑
j∈Pd

yj ,

where yj = 1 if the person j of domain d is employed and yj = 0 in
other case, and Pd is the population in the economic activity d.

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 40/52
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Application to Labour Force Survey

Is it a small areas estimation problem?

I The LFS does not produce official estimates at the domain level, but the
analogous direct estimates of the total Yd, the mean Ȳd = Yd/Nd and the size
Nd are

Ŷ dird =
∑
j∈Sd

wj yj ,
ˆ̄Y dird = Ŷ dird /N̂dir

d , N̂dir
d =

∑
j∈Sd

wj ;

where Sd is the sample domain and wj ’s are the official calibrated sampling
weights.

I The problem of the LFS is that when the domains are bellow the planned level
we find very low sample sizes of domains and therefore very high sampling
errors.

I For the fourth quarter of 2013
I the minimum sample size in the domains is 1,
I the first quartile is 12,
I the median 31,

therefore for some domains with the direct estimator can not get a reliable
estimate of our objective.
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Application to Labour Force Survey

I Response variable (Yd): Ŷ dird .
I Auxiliary variable (Xd): The people registered in the social security

system (SS).
I Model: The models are formulated using the log transform to better fit

the normality error assumption.

log(Yd) = f(log(Xd)) + ud + ed
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Figure 1: Scatter plot between the target variable and the auxiliary variable
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Application to Labour Force Survey

Model ĉGDF cGAIC x̂GDF xGAIC σ̂2
u

Fay-Herriot 74.8 -296.2 74.5 99.8 0.21
Monotone 76.0 -297.5 75.8 109.0 0.24
P-spline 73.9 -296.1 74.7 100.1 0.21

Table 4: ĜDF , conditional and mixed GAIC and σ̂2
u.

Fay-Herriot model:

log(Ŷ dird ) = log(SSd)β + ud + ed
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Application to Health Data

I Data set: Surveys from the Behavioural Risk Factors Information System in
Galicia (SICRI) for the period 2010-2011.

I Domains: D = 41 areas obtained from the 53 counties of Galicia.

I Objective: Prevalence of smokers by sex among the population aged
16 years and over, in the 41 areas of Galicia in the period 2010-2011.

Our goal is to estimate
Yd =

∑
j∈Pd

yj ,

where yj = 1 if the person j of domain d is a smoker and yj = 0 in
other case, and Pd is the population in the area d.
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Application to Health Data

Is it a small areas estimation problem?

I Ŷ dir is the total direct estimator obtained from the SICRI. SICRI is designed to
obtain precise estimates at province level.

I The problem is to get reliable estimates for domains below the planned level
because of small sample sizes.

I For 2010-2011:

For men
I the minimum sample size in the

domains is 44,
I the first quartile is 69,
I the median 93.

For women
I the minimum sample size in the

domains is 48,
I the first quartile is 70,
I the median 88.
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Application to Health Data

I Response variable (Yd): Ŷ dird

I Auxiliary variable (Xd):
I Age: percentage of population under 15 years (15age), from 15 to 24

years (15a24) , from 25 to 44 years (25a44), from 45 to 64 years (45a64)
and 65 and over (65age).

I Degree of urbanization: percentage of population that live in
densely-populated area (zdp), intermediate area (zip) and
thinly-populated area (zpp).

I Activity: proportion of employed (emp), unemployed (unemp) and
inactive people (inac).

I Education level: proportion of people with low education (low),
secundary education (sec) and higher education (higher.educ).
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Application to Health Data
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Figure 2: Relation between the auxiliary variables and the response variable ( log(Ydir)) in men.
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Application to Health Data

Model Linear Monotone P-spline
Label Predictors Predictors Predictors ĉGDF cGAIC x̂GDF xGAIC σ̂2

u

(M1) X12, X8 37.2 -18.5 37.1 79.5 0.40
(M2) X12 X8 40.9 -14.7 41.1 78.8 0.35
(M3) X12 X8 36.5 -18.6 36.4 75.9 0.37
(M4) X12, X8 , X13 37.1 -18.4 37.4 77.9 0.38
(M5) X12, X13 X8 41.0 -14.4 40.8 78.5 0,35
(M6) X12, X13 X8 36.7 -18.4 35.4 71.7 0.34
(M7) X12 X8, X13 40.9 -14.9 40.8 67.2 0.26
(M8) X12 X8 , X13 36.2 -17.8 34.2 70.6 0.30
(M9) X12,X8, X13, X9 37.4 -18.1 36.7 76.1 0.38
(M10) X12, X13, X9 X8 41.0 -12.9 40.4 69.9 0.28
(M11) X12, X13, X9 X8 36.9 -17.5 34.6 68.9 0.31
(M12) X12, X13 X8,X9 41.0 -14.1 40.8 78.4 0.34
(M13) X12, X13 X8,X9 36.6 -20.0 35.6 68.5 0.31
(M14) X12 X8,X9,X13 40.8 -13.0 40.4 64.9 0.24
(M15) X12 X8 ,X9,X13 36.2 -17.3 34.0 68.5 0.26

Table 5: Models fitted to men data. ĜDF and GAIC conditional and mixed values, and σ̂2
u.
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Application to Health Data
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Figure 3: Relation between the auxiliary variables and the response variable ( log(Ydir)) in women.
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Application to Health Data

Model Linear Monotone P-spline
Label Predictors Predictors Predictors ĉGDF cGAIC x̂GDF xGAIC σ̂2

u

(W1) X12, X8 34.7 10.5 35.2 89.5 0.48
(W2) X12 X8 40.2 15.4 40.2 83.5 0.35
(W3) X12 X8 32.9 10.5 31.5 74.7 0.31
(W4) X12, X8, X13 34.4 10.6 34.3 86.1 0.46
(W5) X12, X13 X8 40.0 15.7 39.8 82.5 0.35
(W6) X12, X13 X8 32.3 10.6 30.8 75.7 0.29
(W7) X12 X8 , X13 39.8 15.6 40.0 78.7 0.30
(W8) X12 X8, X13 31.8 10.0 29.8 70.5 0.29
(W9) X12,X8, X13, X10 33.7 9.4 34.7 83.0 0.40
(W10) X12, X13, X10 X8 39.9 15.8 40.3 79.5 0.30
(W11) X12, X13, X10 X8 32.1 10.1 30.9 69.2 0.27
(W12) X12, X13 X8,X10 39.4 15.9 39.1 70.5 0.23
(W13) X12, X13 X8,X10 31.1 10.2 31.1 66.5 0.22
(W14) X12 X8,X10,X13 39.4 21.3 38.8 54.5 0.12
(W15) X12 X8,X10,X13 30.4 9.5 27.9 66.2 0.22

Table 6: Models fitted to women data. ĜDF and GAIC conditional and mixed values, and
σ̂2
u.
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Section 6 Conclusions
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Conclusions

I xGAIC is a compromise solution derived from a mixed log-likelihood and an
empirical estimator of a GDF.

I xGAIC is easily obtained for complex models and it has a good behaviour in
SAE applications.

I The simulations have shown that xGAIC performs better than cGAIC, when
the real model is not linear. This assertion is supported by a quite smaller
classification error rate but also by a smaller RRMSE of the random effect
variance parameter.

I In the socio-economic case, only one predictor is used being the assumption
of linearity fair in this case.Then, the differences between the GAIC values
from different candidate models are very small.

I In the health case, several predictors, which can hardly be assumed to have a
linear relationship with the response, are considered. The differences between
the xGAIC and cGAIC model selection are more important in this case.
Being the σ̂u provided by the cGAIC models, quite higher than that provided
by the xGAIC model.
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Thank you and ...

Happy Birthday!!!

M.J. Lombardía – Generalized Akaike Information Criterion for small area models 53/52


	Introduction
	xGAIC
	Particular models
	Simulation study
	Real applications
	Application to Labour Force Survey
	Application to Health Data

	Conclusions

