Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data

Ricardo Cao

MODES group, University of A Coruña (Spain) Joint work with Inés Barbeito Cal

Galician Seminar of Nonparametric Statistical Inference, June 8, 2016

Index

1 Introduction and Background

- Aims
- Smoothed Bootstrap iid case
- Bootstrap methods for dependent data

2 Already existing smoothing parameter selectors
3 Bootstrap bandwidth selector under independence
4 Smooth Stationary Bootstrap under dependence
5 Smooth Moving Blocks Bootstrap under dependence
6 Simulations
7 Real data application
8 Conclusions
9 References
10 Contact info

Setup and aims

■ General dependent data, $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$: stationary, α-mixing, ϕ-mixing, \ldots
■ Nonparametric Parzen-Rosenblatt kernel density estimation

$$
\hat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x-X_{i}\right)
$$

■ Smooth bootstrap methods

- Bandwidth (h) selection

Smoothed bootstrap for independent data

Consider some statistic of interest: $R(\vec{X}, F)$
Smoothed bootstrap algorithm
1 Using the sample $\left(X_{1}, \ldots, X_{n}\right)$ and the bandwidth $h>0$, compute \hat{f}_{h}
2 Draw bootstrap resamples $\overrightarrow{X^{*}}=\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$ from \hat{f}_{h}
3 Obtain the bootstrap version of the statistic: $R^{*}=R\left(\overrightarrow{X^{*}}, \hat{F}_{h}\right)$
4 Repeat Steps 1-3, B times to obtain $R^{*(1)}, \ldots, R^{*(B)}$
5 Use the values $R^{*(1)}, \ldots, R^{*(B)}$ to approximate the sampling distribution of R.

How to draw from \hat{f}_{h} ?

Considering two independent random variables: $Y \sim F_{n}$ and U with density K, it is easy to prove that $Y+h U$ has density \hat{f}_{h} Drawing resamples from \hat{f}_{h}

1 Draw naive bootstrap resamples

$$
X^{N \overrightarrow{A I V E *}}=\left(X_{1}^{N A I V E *}, \ldots, X_{n}^{N A I V E *}\right) \text { from } F_{n}
$$

2 Draw a sample $\vec{U}=\left(U_{1}, \ldots, U_{n}\right)$ from the density K
3 Obtain the smoothed bootstrap resample $\vec{X}^{*}=\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$, where $X_{i}^{*}=X_{i}^{N A I V E *}+h U_{i}$

Moving Blocks Bootstrap (MBB)

MBB algorithm

Künsch (1989), Liu and Singh (1992)
1 Fix the block lenght, $b \in \mathbb{N}$, and define $k=\min _{\ell \in \mathbb{N}} \ell \geq \frac{n}{b}$
2 Define:

$$
B_{i, b}=\left(X_{i}, X_{i+1}, \ldots, X_{i+b-1}\right)
$$

3 Draw $\xi_{1}, \xi_{2}, \ldots, \xi_{k}$ with uniform discrete distribution on $\left\{B_{1}, B_{2}, \ldots, B_{q}\right\}$, with $q=n-b+1$
4 Define \vec{X}^{*} as the vector formed by the first n components of

$$
\left(\xi_{1,1}, \xi_{1,2}, \ldots, \xi_{1, b}, \xi_{2,1}, \xi_{2,2} \ldots, \xi_{2, b}, \ldots, \xi_{k, 1}, \xi_{k, 2}, \ldots, \xi_{k, b}\right)
$$

Stationary Bootstrap (SB)

SB algorithm

Politis and Romano (1994a)
1 Draw X_{1}^{*} from F_{n}
2 Once obtained $X_{i}^{*}=X_{j}$, for some $j \in\{1,2, \ldots, n-1\}, i<n$, define X_{i+1}^{*} as follows:

$$
\begin{gathered}
X_{i+1}^{*}=X_{j+1}\left(\text { if } j=n, X_{j+1}=X_{1}\right), \text { with probability } 1-p \\
X_{i+1}^{*} \text { is drawn from } F_{n} \text { with probability } p
\end{gathered}
$$

Subsampling

Subsampling algorithm (for dependent data)

Politis and Romano (1994b)
1 Consider a dependent data sample $\left(X_{1}, \ldots, X_{n}\right)$ with marginal distribution F and $\theta=\theta(F)$
2 An estimator $T_{n}=T_{n}\left(X_{1}, \ldots, X_{n}\right)$ of $\theta=\theta(F)$ is considered and

$$
J_{n}(u, F)=\mathbb{P}\left(\tau_{n}\left(T_{n}-\theta\right) \leq u\right)
$$

3 Fix some $b \in \mathbb{N}$ such that $b<n$ and define:

$$
S_{n, i}=T_{b}\left(B_{i, b}\right), i=1,2, \ldots, N, \text { where } N=n-b+1
$$

4 Use:

$$
L_{n}(x)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\left\{\tau_{b}\left(S_{n, i}-T_{n}\right) \leq x\right\}}
$$

to approximate the sampling distribution of $\tau_{n}\left(T_{n}-\theta\right)$:

Plug-in method under dependence (PI)

Hall, Lahiri and Truong (1995)
■ Minimizing in h the asymptotic MISE:

$$
\begin{aligned}
\operatorname{AMISE}(h)= & \frac{1}{n h} R(K)+\frac{1}{4} h^{4} \mu_{2}^{2} R\left(f^{\prime \prime}\right)-h^{6} \frac{1}{24} \mu_{2} \mu_{4} R\left(f^{\prime \prime \prime}\right) \\
& +\frac{1}{n}\left(2 \sum_{i=1}^{n-1}\left(1-\frac{i}{n}\right) \int g_{i}(x, x) d x-R(f)\right)
\end{aligned}
$$

results in $h_{A M I S E}=\left(\frac{J_{1}}{n}\right)^{1 / 5}+J_{2}\left(\frac{J_{1}}{n}\right)^{3 / 5}$, with
$g_{i}\left(x_{1}, x_{2}\right)=f_{i}\left(x_{1}, x_{2}\right)-f\left(x_{1}\right) f\left(x_{2}\right), f_{i}$ the density of $\left(X_{j}, X_{i+j}\right)$,
$J_{1}=\frac{R(K)}{\mu_{2}^{2} R\left(f^{\prime \prime}\right)}$ and $J_{2}=\frac{\mu_{4} R\left(f^{\prime \prime \prime}\right)}{20 \mu_{2} R\left(f^{\prime \prime}\right)}$.

- Now $h_{P I}=\left(\frac{\hat{J}_{1}}{n}\right)^{1 / 5}+\hat{J}_{2}\left(\frac{\hat{J}_{1}}{n}\right)^{3 / 5}$, with \hat{J}_{1} and \hat{J}_{2} some estimators of J_{1} and J_{2}.

Plug-in method under dependence (PI)

- Replace $R\left(f^{\prime \prime}\right)$ by \hat{I}_{2} and $R\left(f^{\prime \prime \prime}\right)$ by \hat{I}_{3}, where:

$$
\begin{gathered}
\hat{I}_{k}=2 \hat{\theta}_{1 k}-\hat{\theta}_{2 k}, k=2,3, \\
\hat{\theta}_{1 k}=2\left(n(n-1) h_{1}^{2 k+1}\right)^{-1} \sum_{1 \leq i<j \leq n} \sum_{1}^{(2 k)}\left(\frac{X_{i}-X_{j}}{h_{1}}\right), \\
\hat{\theta}_{2 k}=2\left(n(n-1) h_{1}^{2(k+1)}\right)^{-1} \sum_{1 \leq i<j \leq n} \sum_{1} \int K_{1}^{(k)}\left(\frac{x-X_{i}}{h_{1}}\right) K_{1}^{(k)}\left(\frac{x-X_{j}}{h_{1}}\right) d x .
\end{gathered}
$$

Leave- $(2 l+1)$-out cross validation $\left(C V_{l}\right)$

Hart and Vieu (1990)
■ Define

$$
C V_{l}(h)=\int \hat{f}^{2}(x) d x-\frac{2}{n} \sum_{j=1}^{n} \hat{f}_{l}^{j}\left(X_{j}\right)
$$

where

$$
\hat{f}_{l}^{j}(x)=\frac{1}{n_{l}} \sum_{i:|j-i|>l}^{n} \frac{1}{h} K\left(\frac{x-X_{i}}{h}\right) .
$$

- Choose n_{l} such that:

$$
n n_{l}=\#\{(i, j):|i-j|>l\} .
$$

- The $C V_{l}$ bandwidth selector is

$$
h_{C V_{l}}=\arg \min _{h} C V_{l}(h) .
$$

Penalized cross validation (PCV)

Estévez, Quintela and Vieu (2002) proposed it for hazard rate estimation

- The PCV bandwidth selecctor is

$$
h_{P C V}=h_{C V_{l}}+\bar{\lambda} .
$$

- $\bar{\lambda}$ is chosen empirically as follows:

$$
\lambda_{n}=\left(0.8 e^{7.9 \hat{\rho}-1}\right) n^{-3 / 10} \frac{h_{C V_{l}}}{100},
$$

where $\hat{\rho}$ is the estimated autocorrelation

Modified cross validation under dependence (SMCV)

Stute (1992) proposed it for independent data
■ Define

$$
\begin{aligned}
\operatorname{SMCV}(h)= & \frac{1}{n h} \int K^{2}(t) d t \\
& +\frac{1}{n(n-1) h} \sum_{i \neq j}\left[\frac{1}{h} \int K\left(\frac{x-X_{i}}{h}\right) K\left(\frac{x-X_{j}}{h}\right) d x\right] \\
& -\frac{1}{n n_{l} h} \sum_{j=1}^{n} \sum_{i:|j-i|>l}^{n}\left[K\left(\frac{X_{i}-X_{j}}{h}\right)-d K^{\prime \prime}\left(\frac{X_{i}-X_{j}}{h}\right)\right] .
\end{aligned}
$$

- The $S M C V$ bandwidth selector is

$$
h_{S M C V}=\arg \min _{h} S M C V(h)
$$

Exact MISE expression for the iid case

$$
\operatorname{MISE}(h)=\mathbb{E}\left[\int\left(\hat{f}_{h}(x)-f(x)\right)^{2} d x\right]=B(h)+V(h)
$$

where

$$
\begin{aligned}
B(h) & =\int\left[\mathbb{E}\left(\hat{f}_{h}(x)\right)-f(x)\right]^{2} d x, \mathrm{e} \\
V(h) & =\int \operatorname{Var}\left(\hat{f}_{h}(x)\right) d x
\end{aligned}
$$

Exact expression for $\operatorname{MISE}(h)$:

$$
\begin{aligned}
B(h) & =\int\left(K_{h} * f(x)-f(x)\right)^{2} d x, \text { and } \\
V(h) & =n^{-1} h^{-1} R(K)-n^{-1} \int\left(K_{h} * f(x)\right)^{2} d x
\end{aligned}
$$

Smoothed bootstrap for the iid case

Smooth bootstrap algorithm for bandwidth selection Cao (1993)

1 Starting from $\left(X_{1}, \ldots, X_{n}\right)$ (iid), and using a pilot bandwidth, g, compute \hat{f}_{g}
2. Draw bootstrap resamples $\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$ from \hat{f}_{g}

3 For every $h>0$, obtain

$$
\hat{f}_{h}^{*}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-X_{i}^{*}}{h}\right)
$$

4 Construct the bootstrap version of MISE:

$$
\operatorname{MISE}^{*}(h)=\int \mathbb{E}^{*}\left[\left(\hat{f}_{h}^{*}(x)-\hat{f}_{g}(x)\right)^{2}\right] d x
$$

5 Obtain the bootstrap selector:

$$
h_{M I S E}^{*}=\arg \min _{h>0} M I S E^{*}(h)
$$

Smoothed bootstrap for the iid case

Closed expression for the bootstrap MISE An exact expression for $M I S E^{*}(h)$ can be found:

$$
\begin{aligned}
\operatorname{MISE}^{*}(h)= & \frac{1}{n^{2}} \sum_{i, j=1}^{n}\left[\left(K_{h} * K_{g}-K_{g}\right) *\left(K_{h} * K_{g}-K_{g}\right)\right]\left(X_{i}-X_{j}\right) \\
& +\frac{R(K)}{n h}-\frac{1}{n^{3}} \sum_{i, j=1}^{n}\left[\left(K_{h} * K_{g}\right) *\left(K_{g} * K_{g}\right)\right]\left(X_{i}-X_{j}\right)
\end{aligned}
$$

where $*$ denotes the convolution operator: $f * g(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y$. Consequently, there is no need to draw bootstrap resamples by Monte Carlo to approximate $M I S E^{*}(h)$.

Exact MISE expression under dependence and stationarity

Exact expression for $\operatorname{MISE}(h)$:

$$
\begin{aligned}
& \operatorname{MISE}(h)=B(h)+V(h), \text { where } \\
& B(h)=\int\left(K_{h} * f(x)-f(x)\right)^{2} d x, \text { and } \\
& V(h)=n^{-1} h^{-1} R(K)-\int\left(K_{h} * f(x)\right)^{2} d x \\
& +\quad 2 n^{-2} \sum_{\ell=1}^{n-1}(n-\ell) \iint K_{h}(x-y) f(y)\left(K_{h} * f_{\ell}(\bullet \mid y)\right)(x) d x d y
\end{aligned}
$$

where $f_{\ell}(\bullet \mid y)$ is the conditional density function of $X_{t+\ell}$ given $X_{t}=y$.

Smooth Stationary Bootstrap

SSB resampling plan Barbeito and Cao (2016)
1 Draw $X_{1}^{*(S B)}$ from F_{n}.
2 Draw U_{1}^{*} with density K and independently of $X_{1}^{*(S B)}$ and define

$$
X_{1}^{*}=X_{1}^{*(S B)}+g U_{1}^{*}
$$

3 Assume we have drawn $X_{1}^{*}, \ldots, X_{i}^{*}$ and consider the index $j / X_{i}^{*(S B)}=X_{j}$. Define I_{i+1}^{*}, such that

$$
\begin{aligned}
\mathbb{P}^{*}\left(I_{i+1}^{*}=1\right) & =1-p \\
\mathbb{P}^{*}\left(I_{i+1}^{*}=0\right) & =p
\end{aligned}
$$

Assign $\left.X_{i+1}^{*(S B)}\right|_{I_{i+1}^{*}=1}=X_{(j \bmod n)+1}$ and draw $\left.X_{i+1}^{*(S B)}\right|_{I_{i+1}^{*}=0}$ from the empirical distribution function
4 Define $X_{i+1}^{*}=X_{i+1}^{*(S B)}+g U_{i+1}^{*}$ (where U_{i+1}^{*} has density K). Go to the previous step if $i+1<n$.

MISE closed expression for SSB

An explicit expression for $M I S E^{*}(h)$ can be obtained:

$$
\begin{aligned}
\operatorname{MISE}^{*}(h)= & n^{-1} h^{-1} R(K) \\
& +\left[\frac{n-1}{n^{3}}-2 \frac{1-p-(1-p)^{n}}{p n^{3}}+2 \frac{(n-1)(1-p)^{n+1}-n(1-p)^{n}+1-p}{p^{2} n^{4}}\right] \\
& \cdot \sum_{i, j=1}^{n}\left[\left(K_{h} * K_{g}\right) *\left(K_{h} * K_{g}\right)\right]\left(X_{i}-X_{j}\right) \\
& -2 n^{-2} \sum_{i, j=1}^{n}\left(K_{h} * K_{g} * K_{g}\right)\left(X_{i}-X_{j}\right) \\
& +n^{-2} \sum_{i, j=1}^{n}\left(K_{g} * K_{g}\right)\left(X_{i}-X_{j}\right)+2 n^{-3} \sum_{\ell=1}^{n-1}(n-\ell)(1-p)^{\ell} \\
& \cdot \sum_{k=1}^{n}\left[\left(K_{h} * K_{g}\right) *\left(K_{h} * K_{g}\right)\right]\left(X_{k}-X_{\lceil(k+\ell-1) \bmod n\rceil+1}\right) .
\end{aligned}
$$

Smooth Moving Blocks Bootstrap

SMBB resampling plan

1 Fix the block lenght, $b \in \mathbb{N}$, and define $k=\min _{\ell \in \mathbb{N}} \ell \geq \frac{n}{b}$
2 Define:

$$
B_{i, b}=\left(X_{i}, X_{i+1}, \ldots, X_{i+b-1}\right)
$$

3 Draw $\xi_{1}, \xi_{2}, \ldots, \xi_{k}$ with uniform discrete distribution on $\left\{B_{1}, B_{2}, \ldots, B_{q}\right\}$, with $q=n-b+1$
4 Define $X_{1}^{*(M B B)}, \ldots, X_{n}^{*(M B B)}$ as the first n components of

$$
\left(\xi_{1,1}, \xi_{1,2}, \ldots, \xi_{1, b}, \xi_{2,1}, \xi_{2,2} \ldots, \xi_{2, b}, \ldots, \xi_{k, 1}, \xi_{k, 2}, \ldots, \xi_{k, b}\right)
$$

5 Define $X_{i}^{*}=X_{i}^{*(M B B)}+g U_{i}^{*}$, where U_{i}^{*} has been drawn with density K and independently from $X_{i}^{*(M B B)}$, for all $i=1,2, \ldots, n$

MISE closed expression for SMBB

An explicit expression for $M I S E^{*}(h)$ can be obtained, considering n an entire multiple of b.

- If $b=n$,

$$
\begin{aligned}
\operatorname{MISE}^{*}(h)= & \frac{R(K)}{n h} \\
& +\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \psi\left(X_{i}-X_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\left(K_{h} * K_{g}\right) * K_{g}\right]\left(X_{i}-X_{j}\right) \\
& +\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[K_{g} * K_{g}\right]\left(X_{i}-X_{j}\right) \\
& +\frac{\psi(0)}{n}
\end{aligned}
$$

where $\psi\left(X_{i}-X_{j}\right)=\left[\left(K_{h} * K_{g}\right) *\left(K_{h} * K_{g}\right)\right]\left(X_{i}-X_{j}\right)$.

MISE closed expression for SMBB

■ If $b<n$,

$$
\begin{aligned}
\operatorname{MISE}^{*}(h)= & \frac{R(K)}{n h} \\
& +\sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} a_{j} \cdot \psi\left(X_{i}-X_{j}\right) \\
& -\frac{2}{n} \sum_{i=1}^{n} a_{i} \sum_{j=1}^{n}\left[\left(K_{h} * K_{g}\right) * K_{g}\right]\left(X_{i}-X_{j}\right) \\
& +\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[K_{g} * K_{g}\right]\left(X_{i}-X_{j}\right) \\
& -\frac{b-1}{n(n-b+1)^{2}} \sum_{i=b-1}^{n-b+1} \sum_{j=b}^{n-b+2} \psi\left(X_{i}-X_{j}\right) \\
& -\frac{1}{n b \cdot(n-b+1)^{2}}\left[\sum_{i=1}^{b-1} \sum_{j=1}^{b-1}(\min \{i, j\}) \psi\left(X_{i}-X_{j}\right)\right.
\end{aligned}
$$

MISE closed expression for SMBB

$$
\begin{aligned}
& +\sum_{i=1}^{b-1} i \sum_{j=b}^{n-b+1} \psi\left(X_{i}-X_{j}\right)+\sum_{i=1}^{b-1} \sum_{j=n-b+2}^{n}(\min \{(n-b+i-j+1), i\}) \psi\left(X_{i}-X_{j}\right) \\
& +\sum_{i=b}^{n-b+1} \sum_{j=1}^{b-1} j \cdot \psi\left(X_{i}-X_{j}\right)+\sum_{i=n-b+2}^{n}(\min \{(n-i+1), b\}) \sum_{j=b}^{n-b+1} \psi\left(X_{i}-X_{j}\right) \\
& +\sum_{i=b}^{n-b+1} \sum_{j=n-b+2}^{n}(\min \{(n-j+1), b\}) \cdot \psi\left(X_{i}-X_{j}\right) \\
& +\sum_{i=n-b+2}^{n} \sum_{j=1}^{b-1}(\min \{(n-b+j-i+1), j\}) \psi\left(X_{i}-X_{j}\right)+b \sum_{i=b}^{n-b+1} \sum_{j=b}^{n-b+1} \psi\left(X_{i}-X_{j}\right) \\
& \left.+\sum_{i=n-b+2}^{n} \sum_{j=n-b+2}^{n}(n+1-\max \{i, j\}) \psi\left(X_{i}-X_{j}\right)\right]
\end{aligned}
$$

MISE closed expression for SMBB

$$
\begin{aligned}
& +\frac{2}{n b(n-b+1)} \sum_{s=1}^{b-1} \sum_{j=1}^{n-s}(\min \{j, b-s\}-\max \{1, j+b-n\}+1) \psi\left(X_{j+s}-X_{j}\right) \\
& -\frac{2}{n b(n-b+1)^{2}}\left[\sum _ { k , \ell = 1 } ^ { b } \left[\sum_{i=k}^{b-2} \sum_{j=\ell}^{b-1} \psi\left(X_{i}-X_{j}\right)+\sum_{i=n-b+2}^{n-b+k} \sum_{j=n-b+3}^{n-b+\ell} \psi\left(X_{i}-X_{j}\right)\right.\right. \\
& \left.+\sum_{i=k}^{b-2} \sum_{j=n-b+3}^{n-b+\ell} \psi\left(X_{i}-X_{j}\right)+\sum_{i=n-b+2}^{n-b+k} \sum_{j=\ell}^{b-1} \psi\left(X_{i}-X_{j}\right)\right] \\
& +\sum_{k=1}^{b-1}(b-k) \sum_{i=k}^{b-2} \sum_{j=b}^{n-b+2} \psi\left(X_{i}-X_{j}\right)+\sum_{\ell=2}^{b}(\ell-1) \sum_{i=b-1}^{n-b+1} \sum_{j=\ell}^{b-1} \psi\left(X_{i}-X_{j}\right) \\
& \left.+\sum_{\ell=2}^{b}(\ell-1) \sum_{i=b-1}^{n-b+1} \sum_{j=n-b+3}^{n-b+\ell} \psi\left(X_{i}-X_{j}\right)+\sum_{k=1}^{b-1}(b-k) \sum_{i=n-b+2}^{n-b+k} \sum_{j=b}^{n-b+2} \psi\left(X_{i}-X_{j}\right)\right]
\end{aligned}
$$

MISE closed expression for SMBB

considering a_{j} such that:

$$
a_{j}=\left\{\begin{array}{ll}
\frac{j}{b(n-b+1)} & , \text { if } j=1, \ldots, b-1 \\
\frac{1}{n-b+1} & , \text { if } j=b, \ldots, n-b+1 . \\
\frac{n-j+1}{b(n-b+1)} & , \text { if } j=n-b+2, \ldots, n
\end{array} .\right.
$$

Simulated models

Six time series models have been considered
■ Model 1:

$$
X_{t}=-0.9 X_{t-1}-0.2 X_{t-2}+a_{t},
$$

where the $a_{t} \stackrel{d}{=} N(0,1)$ are independent. Thus $X_{t} \stackrel{d}{=} N(0,0.42)$

- Model 2:

$$
X_{t}=a_{t}-0.9 a_{t-1}+0.2 a_{t-2}
$$

where $a_{t} \stackrel{d}{=} N(0,1)$ are independent. Thus $X_{t} \stackrel{d}{=} N(0,1.85)$.

Simulated models

■ Model 3:

$$
X_{t}=\phi X_{t-1}+\left(1-\phi^{2}\right)^{1 / 2} a_{t}
$$

with $a_{t} \stackrel{d}{=} N(0,1), \phi=0, \pm 0.3, \pm 0.6, \pm 0.9$. Thus $X_{t} \stackrel{d}{=} N(0,1)$.

- Model 4:

$$
X_{t}=\phi X_{t-1}+a_{t}
$$

where the distribution of a_{t} is given by $\mathbb{P}\left(I_{t}=1\right)=\phi$,
$\mathbb{P}\left(I_{t}=2\right)=1-\phi$, with $\left.a_{t}\right|_{I_{t}=1} \stackrel{d}{=} 0$ (constant), $\left.a_{t}\right|_{I_{t}=2} \stackrel{d}{=} \exp (1)$, and $\phi=0,0.3,0.6,0.9$. We have $X_{t} \stackrel{d}{=} \exp (1)$

Simulated models

■ Model 5:

$$
X_{t}=\phi X_{t-1}+a_{t},
$$

where the distribution of a_{t} is $\mathbb{P}\left(I_{t}=1\right)=\phi^{2}, \mathbb{P}\left(I_{t}=2\right)=1-\phi^{2}$, with $\left.a_{t}\right|_{I_{t}=1} \stackrel{d}{=} 0$ (constant), $\left.a_{t}\right|_{I_{t}=2} \stackrel{d}{=} \operatorname{Dexp}(1)$, and $\phi=0, \pm 0.3, \pm 0.6, \pm 0.9$. Thus $X_{t} \stackrel{d}{=} \operatorname{Dexp}(1)$.
■ Model 6:

$$
X_{t}= \begin{cases}X_{t}^{(1)} & \text { with probability } 1 / 2 \\ X_{t}^{(2)} & \text { with probability } 1 / 2\end{cases}
$$

where $X_{t}^{(j)}=(-1)^{j+1}+0.5 X_{t-1}^{(j)}+a_{t}^{(j)}$ with $j=1,2, \forall t \in \mathbb{Z}$,
$a_{t}^{(j)} \stackrel{d}{=} N(0,0.6)$ independent and $X_{t} \stackrel{d}{=} \frac{1}{2} N(2,0.8)+\frac{1}{2} N(-2,0.8)$

Performance measures

The following results will be shown for the six models considered in the simulations

$$
\begin{gathered}
\log \left(\frac{\hat{h}}{h_{M I S E}}\right) \\
\log \left(\frac{M I S E(\hat{h})}{M I S E\left(h_{M I S E}\right)}\right),
\end{gathered}
$$

where $\hat{h}=h_{C V}, h_{S M C V}, h_{P C V}, h_{P I}, h_{S S B}^{*}, h_{S M B B}^{*}$.

Approximating the optimal bandwidth

Consider some criterion function $\Psi(h)$ (e.g. $M I S E^{*}(h)$ under SSB or SMBB; $C V_{l}(h)$ for Hart and Vieu's CV, Stute's MCV or Estévez, Quintela and Vieu PCV).
1 Consider a set of five equispaced bandwidths, \mathcal{H}_{1} between 0.01 and 10
2 Obtain $h_{O P T_{1}}=\arg \min _{h \in \mathcal{H}_{1}} \Psi(h)$
3 Consider h_{a} the previous value of $h_{O P T_{1}}$ within \mathcal{H}_{1} and h_{b} the following value to $h_{O P T_{1}}$ within \mathcal{H}_{1}
4 Construct a new set, \mathcal{H}_{2}, of equispaced bandwidths between h_{a} and h_{b}
5 Repeat Steps 2-4 10 times
6 The approximated optimal bandwidth is the value obtained in the 10th repetition

Technical aspects

- $l=5$ for $C V_{l}$
- $h_{S M C V}$ is considered as the smallest h for which $\operatorname{SMCV}(h)$ attains a local minimum, not its global one
- Pilot bandwidth for PI: $h_{1}=1$

■ Pilot bandwidth for $h_{S S B}^{*}$ and $h_{S M B B}^{*}$ as in the iid case: some normal reference estimator of

$$
g_{0}=\left(\frac{\int K^{\prime \prime}(t)^{2} d t}{n d_{K} \int f^{(3)}(x)^{2} d x}\right)^{1 / 7}
$$

- $p=0.05$ for SSB
- $b=20$ for SMBB

■ For every model, 1000 random samples of size $n=100$ were drawn

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 1

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 1

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 2

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 2

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 3, $\phi=-0.9$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{\text {MISE }}\right)\right)$. Model 3, $\phi=-0.9$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 3, $\phi=-0.6$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{\text {MISE }}\right)\right)$. Model 3, $\phi=-0.6$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 3, $\phi=-0.3$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 3, $\phi=-0.3$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 3, $\phi=0$

$\log \left(\operatorname{MISE}(\hat{h}) / M I S E\left(h_{M I S E}\right)\right)$. Model 3, $\phi=0$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 3, $\phi=0.3$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 3, $\phi=0.3$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 3, $\phi=0.6$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 3, $\phi=0.6$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 3, $\phi=0.9$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 3, $\phi=0.9$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 4, $\phi=0$

$\log \left(\operatorname{MISE}(\hat{h}) / M I S E\left(h_{M I S E}\right)\right)$. Model 4, $\phi=0$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 4, $\phi=0.3$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 4, $\phi=0.3$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 4, $\phi=0.6$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 4, $\phi=0.6$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 4, $\phi=0.9$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 4, $\phi=0.9$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model $5, \phi=-0.9$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{\text {MISE }}\right)\right)$. Model $5, \phi=-0.9$

$\log \left(\hat{h} / h_{M I S E}\right)$. Model $5, \phi=-0.6$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 5, $\phi=-0.6$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model $5, \phi=-0.3$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 5, $\phi=-0.3$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model $5, \phi=0$

$\log \left(\operatorname{MISE}(\hat{h}) / M I S E\left(h_{M I S E}\right)\right)$. Model 5, $\phi=0$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 5, $\phi=0.3$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{\text {MISE }}\right)\right)$. Model $5, \phi=0.3$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model $5, \phi=0.6$

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 5, $\phi=0.6$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 5, $\phi=0.9$

$\log \left(\operatorname{MISE}(\hat{h}) / M I S E\left(h_{\text {MISE }}\right)\right)$. Model 5, $\phi=0.9$

$\log \left(\hat{h} / h_{\text {MISE }}\right)$. Model 6

$\log \left(\operatorname{MISE}(\hat{h}) / \operatorname{MISE}\left(h_{M I S E}\right)\right)$. Model 6

Real data application: Data sets considered

1 lynx data set: Number of Canadian lynxes trapped (114 observations).

$$
\left(1-\phi_{1} B-\phi_{2} B^{2}\right) Y_{t}=\bar{c}+\left(1+\theta_{1} B+\theta_{2} B^{2}+\theta_{3} B^{3}\right)\left(1+\Theta_{1} B^{12}\right) a_{t} .
$$

2 sunspot.year data set: Yearly number of sunspots from 1700 to 1988 (289 observations).

$$
\begin{gathered}
\left(1-\phi_{1} B-\phi_{2} B_{2}-\phi_{2} B^{3}-\phi_{4} B^{4}\right)(1-B)\left(1-B^{12}\right) Y_{t}= \\
c+\left(1+\theta_{1} B+\theta_{2} B^{2}+\theta_{3} B^{3}+\theta_{4} B^{4}\right) \cdot\left(1+B^{12} \Theta_{1}\right) a_{t}
\end{gathered}
$$

Real data application: lynx data set

Real data application: sunspot. year data set

Real data application: Bandwidth parameters

$h_{S S B}^{*}$	$h_{S M B B}^{*}$	$h_{C V_{l}}$	$h_{P C V}$	$h_{S M C V}$	$h_{P I}$
0.4345	0.4246	0.3173	0.6194	0.2585	0.4152

Table: Bandwidth parameters for lynx data set.

$h_{S S B}^{*}$	$h_{S M B B}^{*}$	$h_{C V_{l}}$	$h_{P C V}$	$h_{S M C V}$	$h_{P I}$
0.3173	0.3295	0.3002	0.5065	0.196	0.3392

Table: Bandwidth parameters for sunspot.year data set.

Main conclusions

■ New SSB and SMBB bootstrap resampling plans under dependence.

- Closed expressions for MISE* under SSB and SMBB. Monte Carlo is not needed.
- Bandwidth selection for the KDE with dependent data:
- Plug-in
- Leave- $(2 l+1)$-out cross validation
- Penalized cross validation
- Modified cross validation
- Smooth Stationary Bootstrap
- Smooth Moving Blocks Bootstrap

■ Good empirical behaviour of $h_{P I}$, but sometimes it produces extremely large banwdidths

- $h_{S S B}^{*}$ and $h_{S M B B}^{*}$ display the overall best performance.

References

Rarbeito, I. and Cao, R. (2016). Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data. Unpublished manuscript.
Cao, R. (1993). Bootstrapping the mean integrated squared error. J. Mult. Anal. 45, 137-160.
國 Efron, B. and Tibishirani, R. (1986). An Introduction to the Bootstrap. Chapman and Hall.
Estévez-Pérez, G., Quintela-del-Río, A. and Vieu, P. (2002). Convergence rate for cross-validatory bandwidth in kernel hazard estimation from dependent samples. J. Statist. Planning and Inference, 104, 1-30.
Rell, Hall, Lahiri, S.N. and Truong, Y.K.(1995). On bandwidth choice for density estimation with dependent data. Ann. Statist., 23, 6, 2241-2263.

References (continued)

國 Hart, J. and Vieu, P. (1990). Data-driven bandwidth choice for density estimation based on dependent data. Ann. Statist., 18, 873-890.
(190) Künsch, H.R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist., 17, 1217-1241.
(iul Liu, Y., and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence, in Exploring the Limits of the Bootstrap, ed. by R. LePage and L. Billiard. New York: Wiley.

Politis, D.N. and Romano, J.R. (1994a). The stationary bootstrap. J. Amer. Statist. Assoc., 89, 1303-1313.

Rolitis, D.N. and Romano, J.R. (1994b). Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions. Ann. Statist., 22, 2031-2050 .
目 Stute, W. (1992). Modified cross-validation in density estimation. J.

Contact info

Thank you for your attention!

You can contact me at rcao@udc.es

